EFFECT OF ZINC CITRATE, SELENIUM CITRATE AND GERMANIUM CITRATE ON BIOCHEMICAL PARAMETERS OF RABBIT BLOOD UNDER HEAT STRESS

Authors

DOI:

https://doi.org/10.32782/2450-8640.2024.1.1

Keywords:

rabbits, blood, zinc citrate, selenium citrate, germanium citrate, enzymes, protein, heat stress

Abstract

Global climate change and increasing environmental temperatures in many regions of the world contribute to mammalian heat stress, which leads to disorders of homeostatic processes in their body. Rabbits do not have sweat glands and cannot effectively regulate their body temperature. In recent years, the use of nanotechnology in animal nutrition to mitigate the negative effects of high temperatures has become a subject of special attention. Nanoparticles are characterised by high bioavailability, surface activity, catalytic and adsorption properties, which allows them to easily interact with mammalian cells. Therefore, the purpose of our study was to determine the effect of zinc citrate, selenium citrate and germanium citrate, produced by nanotechnology, on the biochemical parameters of rabbit blood under heat stress. The study was conducted on young rabbits of the Thermon White breed from 35 to 78 days of age. During the experiment, the temperature in the room was increased from 28.9 to 30°C from 12 to 16 hours using electric adjustable heaters. Animals for the study were formed into control and experimental groups I, II and III of 6 animals each. The control group was fed pelleted feed and given water with unrestricted access. Rabbits in experimental groups I, II and III consumed pelleted feed as in the control group, but received trace element citrates with water during the day: Experimental group I – zinc citrate – 60 mg Zn/l or 12 mg Zn/kg body weight; group II – selenium citrate – 300 μg Se/l or 60 μg Se/kg body weight; group III – germanium citrate – 62.5 μg Ge/l or 12.5 μg Ge/kg body weight. The biochemical parameters of rabbits' blood were studied on day 14 of the preparatory period and on days 14 and 29 of supplementation in the experimental period under conditions of heat stress. The experimental data were calculated by analysis of variance (ANOVA). To identify statistical differences between the control and experimental groups, the a posteriori criterion was used – the Tukey HSD method, differences were considered significant at P≤0.05. It was established that the addition of trace element citrates to the diet of rabbits had a positive effect on mitigating the negative effects of elevated temperatures to varying degrees. In particular, zinc citrate feeding under conditions of heat stress was associated with a lower creatinine level (p<0,05), a decrease in aspartate aminotransferase activity (p<0,01), alanine aminotransferase (p<0,05) and a decrease in cholesterol content (p<0,001) on day 29 of the study. The use of selenium citrate in the diet of animals led to an increase in albumin content (p<0,05), lower creatinine level (p<0,05), decreased aspartate aminotransferase activity (p<0,01), alanine aminotransferase (p<0,05) and lower cholesterol content (p<0,01) at the final stage of the study. The addition of germanium citrate to water resulted in a higher cholesterol content (p<0,05) at the final stage of the study.

References

El-Ratel I.T., Elbasuny M. E., El-Nagar H. A., Abdel-Khalek A. K. E., El-Raghi A.A., El Basuini M.F., El-Kholy K.H., Fouda, S.F. The synergistic impact of Spirulina and selenium nanoparticles mitigates the adverse effects of heat stress on the physiology of rabbit bucks. PLoS One, 2023 18 (7). doi.org/10.1371/journal.pone.0287644.

Oladimeji A.M., Johnson T.G., Metwally K., Farghly M., Mahrose K. M. Environmental heat stress in rabbits: implications and ameliorations. Int J. Biometeorol, 2022. 66 (1). P. 1–11. DOI: 10.1007/s00484-021-02191-0.

Marai I.F.M., Ayyat M.S., Abd El-Monem U.M. Growth performance and reproductive traits at first parity of New Zealand White female rabbits as affected by heat stress and its alleviation under Egyptian conditions. Tropical Animal Health and Production, 2001 33 (6). PP. 451–462. DOI: 10.1023/a:1012772311177.

Liang Z.L., Chen F., Park S., Balasubramanian B., Liu W.C. Impacts of Heat Stress on Rabbit Immune Function, Endocrine, Blood Biochemical Changes, Antioxidant Capacity and Production Performance, and the Potential Mitigation Strategies of Nutritional Intervention. Frontiers in Veterinary Science, 2022, 9. DOI: 10.3389/fvets.2022.906084.

Michalak I., Dziergowska K., Alagawany M., Farag M.R., El-Shall N.A., Tuli H.S., Emran T.B., Dhama K. The effect of metal-containing nanoparticles on the health, performance and production of livestock animals and poultry. Veterinary Quarterly. 2022. 42 (1). PP. 68–94. DOI: 10.1080/01652176.2022.2073399.

Sheiha A.M., Abdelnour S.A., Abd El-Hack M.E., Khafaga A.F., Metwally, K.A., El-Saadony, M.T. Effects of dietary biological or chemical-synthesized nano-selenium supplementation on growing rabbits exposed to thermal stress. Animals, 2022. 10 (3), 430. DOI: 10.3390/ani10030430.

Shi L, Yang R, Yue W, Xun W, Zhang C, Ren Y, et al. Effect of elemental nano-selenium on semen quality, glutathione peroxidase activity, and testis ultrastructure in male Boer goats. Anim Reprod Sci. 2010.118(2–4).PP. 248 –254. DOI:10.1016/j.anireprosci.2009.10.003.

Hassan F., Mahmoud R., El-Araby I. Growth Performance, Serum Biochemical, Economic Evaluation and IL6 Gene Expression in Growing Rabbits Fed Diets Supplemented with Zinc Nanoparticles. Zagazig Vet J, 2017. 45. PP. 238 – 249. DOI: 10.21608/ZVJZ.2017.7949.

Konkol D., Wojnarowski, K. The Use of Nanominerals in Animal Nutrition as a Way to Improve the Composition and Quality of Animal Products. Journal of Chemistry, 2018. PP. 1–7. DOI:10.1155/2018/5927058.

Bunglavan S.J., Garg A.K., Dass R.S., Shrivastava S. Use of nanoparticles as feed additives to improve digestion and absorption in livestock. Livest. Res. Int, 2014. 2. PP. 36–47.

Lesyk Y.V., luchka I.V., Bosanevych N.O., Denys H.H., Grabovska O.S. Resistance of the rabbit organism under effect of different amounts of nano zinc citrate and its combination with cobalt and chrome citrate. Bìol. Tvarin. 2019. 21 (4), PP. 51–57. DOI: 10.15407/animbiol21.04.051.

Sallam A.E., Mansour A.T., Alsaqufi A., Salem M., El-Feky M. Growth performance, anti-oxidative status, innate immunity, and ammonia stress resistance of Siganus rivulatus fed diet supplemented with zinc and zinc nanoparticles. Aquac. Rep, 2020. 18:100410. DOI:10.1016/j.aqrep.2020.100410.

Chrastinová Ľ., Čobanová K., Chrenková M., Poláčiková M., Formelová Z., Lauková A., Ondruška Ľ., Simonová P.M., Strompfová V., Mlyneková Z., et al. Effect of dietary zinc supplementation on nutrients digestibility and fermentation characteristics of caecal content in physiological experiment with young rabbits. Slovak J. Anim. Sci. 2016. 49. P. 23–31.

Zheng H.P. Physiological Function of Organic Germanium and Its Application in Food. Studies of Trace Elements and Health, 2011. 28. PP. 65–67.

Fedoruk R.S., Kovalchuk I.I., Mezentseva L.M., Tesarivska U.I., Pylypets A.Z., Kaplunenko V.H. Germanium compounds and their role in animal body. Bìol. Tvarin, 2022. 24 (1). PP. 50–60. DOI:10.15407/animbiol24.01.050.

Патент України на корисну модель № 127047. МПК (2006): G01N 27/416 (2006.01), G01N 27/27 (2006.01), G01N 19/10 (2006.01), G01N 33/00, H04Q 9/00, G01L 9/00. Аналізатор повітряного середовища електронний / Небилиця М.С., Онищенко Р.О., Ващенко О.В., Бойко О.В. Опубл. 29.03.2023, бюл. № 13.

Патент України на корисну модель No 38391. МПК (2006): C07C 51/41, C07F 5/00,

C07F 15/00, C07C 53/126 (2008.01), C07C 53/10 (2008.01), A23L 1/00, B82B 3/00. Спосіб отримання карбоксилатів металів. Нанотехнологія отримання карбоксилатів металів / Косінов М.В., Каплуненко В.Г. Опубл. 12.01.2009. Бюл. No 1/2009.

Влізло В.В., Федорук Р.С., Ратич І.Б. Лабораторні методи досліджень у біології, тваринництві та ветеринарній медицині: довідник СПОЛОМ, 2012. 764 с.

Petrovska I., Salyha Y., Vudmaska I. Statistical methods in biological research: educational and methodological manual (p. 172) [Review of Statistical methods in biological research: educational and methodological manual]. Agrarian Science, 2022.

Abdel-Wareth A.A.A., Amer S.A., Mobashar M., El-Sayed H.G.M. Use of zinc oxide nanoparticles in the growing rabbit diets to mitigate hot environmental conditions for sustainable production and improved meat quality. BMC Veterinary Research. 2022. 18 (1). P. 354. DOI: 10.1186/s12917-022-03451-w.

Wu G. Functional amino acids in growth, reproduction, and health. Adva. Nutr, 2010. 1. PP. 31–37.

Melillo A. Rabbit Clinical Pathology. Journal of Exotic Pet Medicine. 2007. 16 (3). PP. 135–145. DOI:10.1053/j.jepm.2007.06.002.

Wang H.L., Zhang J.S., Yu H.Q. Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: comparison with selenomethionine in mice. Free Radical Biology & Medicine, 2007. 42 (10). PP. 1524–1533. DOI: 10.1016/j.freeradbiomed.2007.02.013.

Alagawany M., Qattan S.Y.A., Attia Y.A., El-Saadony M.T., Elnesr S.S., Mahmoud M.A., et al. Use of Chemical Nano-Selenium as an Antibacterial and Antifungal Agent in Quail Diets and Its Effect on Growth, Carcasses, Antioxidant, Immunity and Caecal Microbes. Animals, 2021. 11 (11). P. 3027. DOI: 10.3390/ani11113027.

Dieck H.T, Döring F., Fuchs D., Roth H-P., Daniel H. Transcriptome and proteome analysis identifies the pathways that increase hepatic lipid accumulation in zinc-deficient rats. J Nutr. 2005;135(2):199–205.

Nakyinsige K., Sazili A.Q., Aghwan Z.A., Zulkifli I., Goh Y.M., Fatimah A.B. Changes in blood constituents of rabbits subjected to transportation under hot, humid tropical conditions. Asian-Australasian Journal of Animal Sciences, 2013. 26 (6). PP. 874–878. DOI: 10.5713/ajas.2012.12652.

Navab M., Yu R., Gharavi N., et al. High-density lipoprotein: Antioxidant and antiinflammatory properties. Current Atherosclerosis Reports, 2007. 9. PP. 244–248. DOI: 10.1007/s11883-007-0026-3.

Brites F., Martin M., Guillas I., Kontush A. Antioxidative activity of high-density lipoprotein (HDL): Mechanistic insights into potential clinical benefit. BBA Clinical, 2017. 8. PP. 66–77. DOI: 10.1016/j.bbacli.2017.07.00.

Published

2024-06-12

Issue

Section

Статті