КОНСТРУКЦІЯ БІОРЕАКТОРА ДЛЯ ВИДАЛЕННЯ ФЕНОЛЬНИХ СПОЛУК ТА БІОСЕНСОРА ДЛЯ ЇХ АНАЛІЗУ
DOI:
https://doi.org/10.32782/2450-8640.2021.2.3Keywords:
HCF, laccase, ABTS, amperometric biosensor, xenobioticsAbstract
In this study, we describe the fabrication of sensitive biosensor for the detection of phenolic substrates using laccase immobilized onto HexaCyanoFerrate (HCF) modified graphite electrode. The results of amperometric analysis revealed that the Pt-HCF-modified laccase bionanoelectrode possesses better electrochemical behavior for laccase than non-modified carbon electrodes (control). The bioelectrode have demonstrated 4 folds enhanced maximal current at substrate saturation (Imax) values, 5 folds increased sensitivity and twice wide linearity compared with control bioelectrode. A laboratory prototype of a bioreactor based on chitosan beads with encapsulated bioelement: laccase-Fe3O4 – for degradation of diclofenac, which can be successfully used for biodegradation of xenobiotics (DF) in model solutions, was constructed.
References
Alexander M. Biodegradation and Bioremediation. 2nd Edition San Diego: Academic Press, USA, 1999. 472 p.
Gamella M., Campuzano S., Reviejo J.M., Pingarrón A.J. Electrochemical estimation of the polyphenol index in wines using a laccase biosensor. J. Agric. Food Chem. 2006. Vol. 54. P. 7960–7967.
Torrecilla J., Mena M.L., Yáñez-Sedeño P., García J. Quantification of phenolic compounds in olive oil mill wastewater by artificial neural network / laccase biosensor. J. Agric. Food Chem. 2007. Vol. 55. P. 7418–7426.
Kulys J., Bratkovskaja I. Antioxidants determination with laccase. Talanta. 2007. Vol. 72. P. 526–531.
Annachhatre A.P., Gheewala S.H. Biodegradation of chlorinated phenolic compounds, Biotechnol. Adv. 1996. Vol. 14. P. 35–56.
Neto J.R.O., Rezende S.G., Lobon G.S., Garcia T.A., Macedo I.Y.L., Garcia L.F., Alves V.F., Torres I.M.S., Santiago M.F., Schmidt F., Gil E.S. Electroanalysis and laccase-based biosensor on the determination of phenolic content and antioxidant power of honey samples. Food Chem. 2017, Vol. 237. P. 1118-1123.
Callahan M.A., Slimak M.W., Gabel N.W., May I., Fowler C., Freed J.R., et al. Water-related environment fate of 129 priority pollutants Vol. II: Halogenated Aliphatic Hydrocarbons Halogenated Ethers Monocyclic Aromatics Phthalate Esters Polycyclic Aromatic Hydrocarbons Nitrosamines Miscellanelus Compounds. US Environmental Protecti, Office of Water Planning and Standards, Office of Water and Waste Management, U.S. Environmental Protection Agency, Washington, DC, 1979.
Environmental Protection Agency, United States, Toxic and Priority Pollutants, n.d. Commission European, Priority substances under the Water Framework Directive, n.d
Gao J., Liu L., Liu X., Zhou H., Huang S., Wang Z. Levels and spatial distribution of chlorophenols – 2,4-dichlorophenol, 2,4,6-trichlorophenol, and pentachlorophenol in surface water of China. Chemosphere. 2008. Vol. 71. P. 1181–1187.
Weber Manfred, Weber Markus, Kleine-Boymann, Phenol M. Ullmann's Encyclopedia of Industrial Chemistry. 6th. Weinheim : Wiley-VCH, 2005. doi:10.1002/14356007.a19_299. pub2.
Chang H.-S., Choo K.-H., Lee B., Choi S.-J. The methods of identification, analysis, and removal of endocrine disrupting compounds (EDCs) in water. J. Hazard. Mater. 2009. Vol. 172. P. 1–12.
Cunha S.C., Fernandes J.O. Assessment of bisphenol A and bisphenol B in canned vegetables and fruits by gas chromatography–mass spectrometry after QuEChERS and dispersive liquid–liquid microextraction. Food Control. 2013. Vol. 33. P. 549–555.
Ropero A.B., Alonso-Magdalena P., García-García E., Ripoll C., Fuentes E., Nadal A. Bisphenol-A disruption of the endocrine pancreas and blood glucose homeostasis. Int. J. Androl. 2008. Vol. 31. P. 194–200.
Wang Y, Song J, Zhao W. et al. In situ degradation of phenol and promotion of plant growth in contaminated environments by a single Pseudomonas aeruginosa strain. J. Hazard. Mater. 2011. Vol. 192. P. 354–360.
Mohammadi S, Kargari A, Sanaeepur H, Abbassian K, Najafi A, Mofarrah E. Phenol removal from industrial wastewaters: a short review. Desalin Water Treat. 2015. Vol. 53. P. 2215–34.
Khazaali F, Kargari A, Rokhsaran M. Application of low-pressure reverse osmosis for effective recovery of Bisphenol A from aqueous wastes. Desalin Water Treat. 2014. Vol. 52 (40–42). P. 7543–51.
Loh CH, Zhang Y, Goh S, Wang R, Fane AG. Composite hollow fiber membranes with different poly (dimethylsiloxane) intrusions into substrate for phenol removal via extractive membrane bioreactor. J. Membr. Sci. 2016. Vol. 500. P.236–44.
Gallego A, Fortunato MS, Foglia J et al. Biodegradation and detoxification of phenolic compounds by pure and mixed indigenous cultures in aerobic reactors. Int. Biodeterior. Biodegrad. 2003. Vol. 52. P. 261–267
Basha KM, Rajendran A, Thangavelu V. Recent advances in the biodegradation of phenol: a review. Asian J. Exp. Biol. Sci. 2010. Vol. 1(2). P. 219–234.
Baldrian P. Fungal laccases – occurrence and properties. FEMS Microbiol. Rev. 2006. Vol. 30, No. 2. P. 215–242.
Nunes, C.S., Kunamneni, A. Laccases – properties and applications. Enzymes in Human and Animal Nutrition. 2018. Vol. 7. P. 133–161.
Roohi Neha Jain Pramod W. Ramteke. Microbial Laccase and its Applications in Bioremediation. Сurr. Biochem. Eng. 2016. Vol. 3. P. 110–121.
Mogharabi M., Faramarzi M.A. Laccase and laccase-mediated systems in the synthesis of organic compounds. Advanced Synthesis and Catalysis. 2014. Vol. 356, No. 5. P. 897–927.
Yashas S.R., Shiwakumara B.P., Udayashankara T.H., Krishna B.M. Laccase biosensor: Green technique for quantification of phenols in wastewater (A review). Oriental J. Chem. 2018, Vol. 34, No. 2, P. 631–637.
Gupta N., Lee F.S., Farinas E.T. Laboratory evolution of laccase for substrate specificity. J. Mol. Catal. B: Enzymatic. 2010.Vol. 62, No. 3-4. P. 230–234.
Riva S. Laccases: blue enzymes for green chemistry. Trends Biotechnol. 2006. Vol. 24, No. 5. P. 219–226.
Yoshida H. Chemistry of lacquer (Urushi). J. Chem.Soc. (Japan). 1883. Vol. 43. P. 472–486.
Xiuyan Zhao, Fei Chang, Zemin Fang, Yinliang Zhang, Yazhong Xiao. Bioinformatic analysis and characterization of myxobacteria laccase-like multicopper oxidases. Chinese J. Biotechnol. 2017. Vol. 33, No. 4. Р. 609−619.
Claus H. Laccases: structure, reactions, distribution. Micron. 2004. Vol. 35, No. 1-2. Р. 93–96.
Niladevi K.N., Jacob N., Prema P. Evidence for a halotolerant-alkaline laccase in Streptomyces psammoticus: purification and characterization. Proc. Biochem. 2008. Vol. 43, No. 6. P. 654–660.
Fang Z.-M., Li T.-L., Chang F., Zhou P., Fang W., Hong Y.-Z., Zhang X.-C., Peng H., Xiao Y.-Z. A new marine bacterial laccase with chloride-enhancing, alkalinedependent activity and dye decolorization ability. Biores. Technol. 2012. Vol. 111. P. 36–41.
Claus H. Laccases and their occurrence in prokaryotes. Arch. Microbiol. 2003. Vol. 179, №3. P. 145–150.
Nagai M. T., Sato H., Watanabe K., Saito M. Kawata H. Purification and characterization of an extracellular laccase from the edible mushroom Lentinula edodes, and decolorization of chemically different dyes. Microbiol. Biotechnol. 2002. Vol. 60, No. 3. P. 327–335.
Polishchuk E.N., Kovalenko A.G. Biological activity of glycopolymers from Basidiomycetes mushrooms. Biopolym. Cell. 2009. Vol. 25, No. 3. Р. 181–193.
Tetsch L., Bend J., Hölker U. Molecular and enzymatic characterization of extraand intracellular laccases from the acidophilic ascomycete. Hortaea acidophila Antonie van Leeuwenhoek. 2006. Vol. 90, No. 2. P. 183–194.
Wenting Zhou, Wenxiang Zhang, Yanpeng Cai. Laccase immobilization for water purification: A comprehensive review. Chem. Eng. J. 2021. Vol. 403, P. 126272.