THE EFFECT OF CONFINED AND INTERFACE PHONONS ON INTERBAND LIGHT ABSORPTION IN CdS QUANTUM DOTS

Authors

DOI:

https://doi.org/10.32782/2450-8640.2022.1.10

Keywords:

Huang-Rhys factor, optical transitions, phonons, absorption coefficient

Abstract

The effect of confined and interface phonons on the exciton absorption coefficient of polarized light as a function of its frequency for spherical CdS quantum dots placed in an SiO2 dielectric matrix was studied. The complex structure of the valence band, namely its degeneracy at point Г, is taken into account in the multi-band effective mass model. Calculations were performed for different temperatures (from helium to room temperature) and radii of the spherical quantum dot of the CdS/SiO2 heterostructure. Such sizes of quantum dots were studied when the energy levels of the electron and the hole were sufficiently far from each other. The electron-phonon interaction parameter (Huang-Rhys factor) was determined for different radii of quantum dots. Absorption coefficients due to transitions of charge carriers between the lowest two optically active levels in a quantum dot under the influence of linearly polarized light were calculated. The size dispersion of quantum dots is taken into account using the Gaussian distribution. The maximum variance in size was 5%. Phonon repetitions were obtained in the absorption spectra. A comparison of the obtained results with the corresponding ones taking into account individual branches of polarization phonons was made.

References

Rogach A.L., Franzl T., Klar T.A. and other. Aqueous Synthesis of Thiol-Capped CdTe Nanocrystals: State-of-the-Art. J. Phys. Chem. C. 2007. Vol. 111. P. 14628–14637. https://doi.org/10.1021/jp072463y.

Chin T.K.P., Stouwdam J. W., Bavel, S.S. et other. Nanotechnology. 2008. Vol. 19. P. 205602–205612. https://doi.org/10.1088/0957-4484/19/20/205602.

Hasselbarth A., Eychmuller E., and Well H. Chem. Phys. Lett. 1993. Vol. 203. P. 271–276. https://doi.org/10.1016/0009-2614(93)85400-I.

Zhong X., Feng Y., Knoll W., Han M. Alloyed ZnxCd1-xS Nanocrystals with Highly Narrow Luminescence Spectral Width. J. Am. Chem. Soc. 2003. Vol. 125. P. 13559–13563. https://doi.org/10.1021/ja036683a.

Tkach M.V., Makhanets O.M., Prots I.V. Properties of Phonon, Electron and Hole Spectra in Some Cylindrical Nanoheterosystems. Ukr. J. Phys. 2001. Vol. 4646. P. 727–734.

Boichuk, V.I., Borusevych, V.A., Shevchuk, I.S. Electronic polaron of the AlN/GaN/AlN double nanoheterostructure of hexagonal symmetry crystals. Journal of Optoelectronics and Advanced Materials. 2008. Vol. 10. P. 1357–1364.

Matos-Abiague A., Rodríguez-Suárez R.L. Spin-orbit coupling mediated spin torque in a single ferromagnetic layer. Phys. Rev. B. 2009. Vol. 80. P. 094424–094430. https://doi.org/10.1103/PhysRevB.80.094424.

Sun K.W., Huang C.L., Huang G.B., Lee H.C. Inter- and intra-subband relaxation of hot electrons in GaAs/AlGaAs quantum wells. Solid St. Communication. 2003. Vol. 126. P. 519-522. https://doi.org/10.1016/S0038-1098(03)00235-7.

H¨ohberger E. M., Kirschbaum J., Blick R.H., Kotthaus J.P., Wegscheider W. Electron–phonon interaction in freely suspended quantum dots. Physica E. 2003. Vol. 18. P. 99–100. https://doi.org/10.1016/S1386-9477(02)01029-9.

Tkach N.V, Zharkoi V.P. Spectrum and electron-phonon interaction in a medium with a cylindrical quantum wire. Semiconductors. 1999. Vol. 33. P. 559–563.

Ипатова И.П., Маслов А.Ю., Прошина О. В. Поляронное состояние в квантовой точке для частицы с вырожденным зонным спектром. Физ. тех. полупров. 1999. Т. 33. С. 832–838.

Fomin V.M., Gladilin V.N., Devreese J.T., Pokatilov E.P., Balaban S.N., Klimin S.N. Photoluminescence of spherical quantum dots Phys. Rev. B. 1998. Vol. 57. P. 2415-2421. https://doi.org/10.1103/PhysRevB.57.2415.

Фрисов Ю.А. Полярони. Москва : Наука, 1975. 367 с.

Bandaranyak R.J., Wen G.W., Lin J.Y., Jiang H.X., Sorensen C.M. Structural phase behavior in II–VI semiconductor nanoparticles. Appl. Phys. Lett. 1995. Vol. 67. P. 834–839. https://doi.org/10.1063/1.115458.

Angel O.Z., Alvarado‐Gil J.J., Morales R.L. Band‐gap shift in CdS semiconductor by photoacoustic spectroscopy: Evidence of a cubic to hexagonal lattice transition. Appl. Phys. Lett. 1994. Vol. 64. P. 291–298. https://doi.org/10.1063/1.111184.

Бир Г.В., Пикус Г.Е. Симметрия и деформационные дефекты в полупроводниках. Москва : Наука, 1972. 347 с.

Wang W., Germanenko I., El-Shall M.S. Room-Temperature Synthesis and Characterization of Nanocrystalline CdS, ZnS, and CdxZn1-xS. Chem. Mater. 2002. Vol. 14. P. 3028–3033. https://doi.org/10.1021/cm020040x.

Корбутяк Д.В., Коваленко О.В., Будзуляк С.І. Світловипромінюючі властивості квантових точок напівпровідникових сполук A2B6. УФЖ. 2012. Т.7. № 1. С. 48–95.

Корбутяк Д.В., Токарев С.В., Будзуляк С.І., Курик А.О., Кладько В.П., Поліщук Ю.О., Шевчук О.М., Ільчук Г.А., Токарев В.С. Оптичні та структурно-дефектні характеристики нанокристалів CdS:Cu і CdS:Zn, синтезованих в полімерних матрицях. Фіз. і хім. тверд. тіла. 2013. Т. 14. № 1. С. 222–227.

Fediv V.I., Rudko G.Yu., Savchuk A.I. Synthesis of Mn2+-doped CdS nanoparticles covered with different adsorptive layers and their application as biosensors. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2014. Vol. 17(1). P. 46–51.

Fediv V.I., Rudko G.Yu., Savchuk A.I. Synthesis of colloidal nanoparticles CdS:Mn in the polymer solution for biological applications. Functional materials. 2014. Vol. 21(2). P. 220–225.

Li Y., Huang F., Zhang Q., Gu Z. Solvothermal synthesis of nanocrystalline cadmium sulfide. Journal of Materials Science. 2000. Vol. 35. P. 5933–937.

Sivasubramanian V., Arora A.K., Premila M. Optical properties of CdS nanoparticles. Physica E: Low-dim. Systems and Nanostructures. 2006. Vol. 31. P. 93–98. https://doi.org/10.1016/j.physe.2005.10.001

Risbul S.H., Alivisatos A.P. Resonance Raman studies of the ground and lowest electronic excited state in CdS nanocrystals. J. Chem. Phys. 1993. Vol. 98. P. 8432–8437. https://doi.org/10.1063/1.464501.

Schmitt-Rink S., Miller D.A.B., Chemla D.S. Theory of the linear and nonlinear optical properties of semiconductor microcrystallites. Phys. Rev. B. 1987. Vol. 35. P. 8113–8120. https://doi.org/10.1103/PhysRevB.35.8113.

Scamarcio G., Spagnolo V., Venturi G., Lugará M., Righini G.C. Size dependence of electron-LO-phonon coupling in semiconductor nanocrystals. Phys. Rev. B. 1995. Vol. 53., No 15-16. P. R10489-R10492. https://doi.org/10.1103/PhysRevB.53.R10489.

Hayashi S., Sando H., Agata M., Yamamoto Y. Resonant Raman scattering from ZnTe microcrystals: Evidence for quantum size effects. Phys. Rev. B. 1989. Vol. 40. P. 5544–5549. https://doi.org/10.1103/PhysRevB.40.5544.

Абакумов В.Н., Перель В.И., Яссиевич И.Н. Безызлучательная рекомбинация в полупроводниках. Санкт-Петербург: Издательство «Петербургский институт ядерной физики им. Б.П. Константиновна РАН», 1997. 256 c.

Baldereshi A., Lipari N.O. Spherical model of shallow acceptor states in semiconductors. Phys. Rev. B. 1973. Vol. 8. P. 2697-2709.

Moskalenko A.S., Berakdar J., and other. Single-particle states in spherical Si/SiO2 quantum dots. Phys. Rev. B. 2007. Vol. 76(8). P. 085427-085427.

Sirenko Yu.M., Jeon J.-B., Kim K.W., Littlejohn M. A., Stroscio M.A. Envelope-function formalism for valence bands in wurtzite quantum wells. Phys. Rev. B. 1997. Vol. 53. P. 3456-3461.

Xia J. -B., Li J. Electronic structure of quantum spheres with wurtzite structure. Phys. Rev. B. 1999. Vol. 60. P. 11540-1999.

Lawaetz P. Valence-Band Parameters in Cubic Semiconductors. Phys. Rev. B. 1971. Vol. 4. P. 3460-3471.

Давыдов А.С. Теория твердого тела. Москва : Наука. 1976. 431 с.

Ткач М, Сеті Ю., Войцехівська О. Квазічастинки у наногетеросистемах. Квантові точки та дроти. Чернівці : Книги-ХХІ. 2015. 386 с.

Huang K., Rhys A. Theory of Light Absorption and Non-Radiative Transitions in F-Centers. Proc. R. Soc. Lond. 1951. Vol. 204. P. 406–429.

Published

2022-12-22

Issue

Section

Статті