ACOUSTIC POLLUTION OF THE ATMOSPHERE ON THE STREETS OF THE CITY OF LVIV AND THE INFLUENCE OF GREEN SPACES ON THE LEVEL OF NOISE CAUSED BY VEHICULAR TRAFFIC
DOI:
https://doi.org/10.32782/2450-8640.2024.2.5Keywords:
acoustic noise, air pollution, motor transport, ecosystem services, green spaces, urban ecosystem.Abstract
Acoustic noise is a common type of physical air pollution that worsens the quality of the environment in cities. The aim of this study was to determine the level of noise load on the streets of the city of Lviv and the influence of green spaces on the indices of acoustic noise caused by motor transport. Forty sites were selected for the study: 30 sites (S1–S30) were chosen on avenues and streets of the city with intensive traffic and 10 sites (A1–A5 and B1–B5) were on the territory of Sknilivsky Park and Ivan Vyhovsky Park, respectively, neighboring Vyhovsky Street. Sites A1 and B1, A2 and B2, A3 and B3, A4 and B4, A5 and B5 were located at a distance of 10 m, 20 m, 50 m, 100 m and 200 m from the roadway, respectively. Sites S1-S30 were divided into two groups: group-1 included sites with uniform traffic, and group-2 included sites located near intersections and junctions of streets. Among the sites of group-1, two subgroups were chosen, namely subgroup-1c covering sites on streets paved with cobblestones, and subgroup-1a, which included sites on streets covered with asphalt concrete mix. Non-constant noise was analyzed, assessed by the equivalent sound level (LAeq., dBA). Measurements were made during working days of the week using a Flus MT-901A noise-meter, according to the standard technique. The results were processed using variation statistics methods. The research has established that the LAeq. value on the analyzed sites S1-S30 was 73.30 ± 5.21 dBA and exceeded the value specified by regulatory documents. The equivalent sound level on sites of group-2 exceeded the LAeq. value on sites of group-1 by 5.46 dBA (p < 0.05). On streets paved with cobblestones, the LAeq. value showed an upward trend compared to that on streets with asphalt concrete pavement. The equivalent sound level in parks decreased by 23.4–35.9 % (p < 0.05–0.01) on sites located 50–200 m from the noise source (vehicle traffic). Since the reduction of noise pollution is one of the ecosystem services provided by green spaces in cities, the expansion of the size of green zones can be recommended as a nature-oriented solution for improving the quality of the environment and the ecological state of the atmosphere in the territory of urban ecosystems.
References
1. Решетченко А. І. Дослідження впливу автотранспортних потоків на акустичне середовище урболандшафтів. Комунальне господарство міст. 2018. Вип. 7. С. 180–183.
2. Day A., Bryant D. Brake noise, vibration, and harshness. In: Braking of Road Vehicles. Second Edition. Elsevier Inc., 2022. P. 323–389.
3. Pascale A., Guarnaccia C., Macedo E., Fernandes P., Miranda A.I., Sargento S., Coelho M.C. Road traffic noise monitoring in a smart city: sensor and model-based approach. Transportation Research Part D. 2023. Vol. 125. 103979. DOI: 10.1016/j.trd.2023.103979.
4. Masino J., Pinay J., Reischl M., Gauterin F. Road surface prediction from acoustical measurements in the tire cavity using support vector machine. Applied Acoustics. 2017. Vol. 125. P. 41–48. DOI: 10.1016/j.apacoust.2017.03.018.
5. Sandberg U. Road traffic noise—The influence of the road surface and its characterization. Applied Acoustics. 1987. Vol. 21. No. 2. P. 97–118. DOI: 10.1016/0003-682X(87)90004-1.
6. Li X., Li Y., Guo W., Zhang Y. Effects of ambient noise isolation on illness severity and mental health among hospitalized children with asthma: retrospective study. Noise and Health. 2024. Vol. 26. No. 121. P. 128–135. DOI: 10.4103/nah.nah_22_24.
7. Liu Y., Gu D., Zhao H., Yu R. Influence of different noise types on hearing function in patients treated for mild otitis media. Noise and Health. 2024. Vol. 26. No. 121. P. 231–234. DOI: 10.4103/nah.nah_6_24.
8. Zhang X., Zhou S. Building a city with low noise pollution: exploring the mental health effect thresholds of spatiotemporal environmental noise exposure and urban planning solution. International Journal of Environmental Research and Public Health. 2024. Vol. 20. No. 5.
4222. DOI: 10.3390/ijerph20054222.
9. Zou N., Wang H., Huang Z., Wang Q. Assessment of noise exposure and risk of hearing loss for young people in amusement arcades. Noise and Health. 2024. Vol. 26. No. 122. P. 338–345. DOI: 10.4103/nah.nah_59_23.
10. Beutel M.E., Jünger C., Klein E.M., Wild P., Lackner K., Blettner M., Binder H., Michal M., Wiltink J., Brähler E., Münzel T. Noise annoyance is associated with depression and anxiety in the general population– the contribution of aircraft noise. PLoS One. 2016. Vol. 11. No. 5.
e0155357. DOI: 10.1371/journal.pone.0155357.
11. Daiber A., Kröller-Schön S., Frenis K., Oelze M., Kalinovic S., Vujacic-Mirski K., Kuntic M., Bayo Jimenez M.T., Helmstädter J., Steven S., Korac B., Münzel T. Environmental noise induces the release of stress hormones and inflammatory signaling molecules leading to oxidative stress and vascular dysfunction—Signatures of the internal exposome. Biofactors. 2019. Vol. 45. No. 4. P. 495–506. DOI: 10.1002/biof.1506.
12. Hammer M.S., Swinburn T.K., Neitzel R.L. EHP – environmental noise pollution in the United States: developing an effective public health response. Environmental Health Perspectives. 2014. Vol. 122 No. 2. P. 115–119. DOI: 10.1289/ehp.1307272.
13. Szopińska K., Balawejder M., Warchoł A. National legal regulations and location of noise barriers along the Polish highway. Transportation Research Part D: Transport and Environment. 2022. Vol. 109. 103359. DOI: 10.1016/j.trd.2022.103359.
14. Kalel N., Bhatt B., Darpe A., Bijwe J. Suppression of brake noise and vibration using aramid and zylon fibers: experimental and numerical study. ACS Omega. 2022. Vol. 7. No. 25. P. 21946–21960. DOI: 10.1021/acsomega.2c02313.
15. Ayaz M., Arshad-Nauman M. Traffic noise abatement through tree and shrub vegetation. Pakistan Journal of Forestry. 1998. Vol. 48. No. 1–4. P. 1–11.
16. Samara T., Tsitsoni T. The effects of vegetation on reducing traffic noise from a city ring road. Noise Control Engineering Journal. 2011. Vol. 59. No. 1. P. 68–74. DOI: 10.3397/1.3528970.
17. Поліщук О., Лесів М., Антоняк Г. Вплив транспортного навантаження на акумуляцію металів у рослинах на території м. Львова. Вісник Львівського університету. Серія біологічна. 2020. Вип. 82. С. 101–109. DOI: 10.30970/vlubs.2020.82.08.
18. Polishchuk A.I., Antonyak H.L. Dynamics of foliar concentrations of photosynthetic pigments in woody and herbaceous plant species in the territory of an industrial city. Biologichni Studii / Studia Biologica. 2022. Vol. 16. No. 2. P. 29–40. DOI:
http://dx.doi.org/10.30970/sbi.1602.684.
19. Поліщук О. І., Жигаль Н. Б., Антоняк Г. Л. Динаміка концентрації хлорофілу в листках деревних рослин на території міста Львова. Acta Carpathica. 2023. Вип. 1. C. 34–44. DOI: 10.32782/2450-8640.2023.1.4.
20. ДСТУ-Н Б В.1.1.-35:2013. Настанова з розрахунку рівнів шуму в приміщеннях і на територіях. Київ : Мінрегіон України, 2014. 58 с.
21. Welham S.J., Gezan S.A., Clark S.J., Mead A. Statistical Methods in Biology. Design and Analysis of Experiments and Regression. Taylor & Francis Group, LLC, 2015. 568 p. DOI: 10.1201/b17336.
22. ДБН В.1.1-31:2013. Захист територій, будинків і споруд від шуму. Київ : Міністерство регіонального розвитку, будівництва та житлово-комунального господарства України, 2014.
23. Наказ Міністерства охорони здоров’я України від 22.02.2019 № 463 «Про затвердження Державних санітарних норм допустимих рівнів шуму в приміщеннях житлових та громадських будинків і на території житлової забудови». Київ, 2019.
24. Шукель І. В., Карпин Н. І., Гордійчук А. В. Особливості формування підліскового ярусу у Скнилівському парку Львова. Науковий вісник НЛТУ України. 2012. Вип. 22.5. С. 67–71.