IMPROVEMENT OF LACCASE-BASED AMPEROMETRIC BIOSENSOR WITH TITANIUM DIOXIDE NANOPARTICLES
DOI:
https://doi.org/10.32782/2450-8640.2021.1.4Keywords:
TiO2, Nafion®, laccase, ABTS, amperometric biosensorAbstract
The development of new approaches for monitoring of the dangerous substances in environment is a topical present problem to improve human life quality. In this point of view, electrochemical biosensors have received increased attention due to their high specificity, sensitivity, reliability, portability and simplicity in operation. Nowadays, there is a rapid growth in the use of semiconductor nanoparticles (NPs) in fabricating electrochemical sensors, stimulated with the unique properties of such nanomaterials as large surface area and good biocompatibility. The NPs-modified laccase based biosensors are very promising in quantifying phenolic compounds with good precision and accuracy. Here, we described construction of biosensor for phenols analysis based on laccase combined with commercial TiO2 nanoparticles incorporated in Nafion® polymer. The constructed bioelectrodes have demonstrated improving the operational parameters compare with the bioelectrodes without usage of TiO2 that make them more promising for the phenols analysis in the real samples of wastewater and ground water.
References
Rodríguez-Delgado M., Alemán-Nava G., Rodríguez-Delgado J., Dieck-Assad G., Martínez-Chapa S., Barceló D., Parra R. Laccase-based biosensors for detection of phenolic compounds. Trends Anal. Chem. 2015. Vol. 74. P. 21–45, https://doi.org/10.1016/j.trac.2015.05.008
Yashas S., Shivakumara B., Udayashankara T., Krishna B. Laccase biosensor: Green technique for quantification of phenols in wastewater (a review). Oriental Journal of Chemistry. 2018. Vol. 34. P. 631–637, https://doi.org/10.13005/ojc/340204
Jones S., Solomon E. Electron transfer and reaction mechanism of laccases. Cellular and Molecular Life Sciences. 2015. Vol. 72. P. 869–883, https://doi.org/10.1007/s00018-014-1826-6
Kavetskyy T., Smutok O., Demkiv O., Maťko I., Švajdlenková H., Šauša O., Novák I., Berek D., Čechová K., Pecz M., Nykolaishyn-Dytso O., Wojnarowska-Nowak R., Broda D., Gonchar M., Zgardzińska B. Microporous carbon fibers as electroconductive immobilization matrixes: Effect of their structure on operational parameters of laccase-based amperometric biosensor. Mater. Sci. Eng. C. 2020. Vol. 109. P. 110570, https://doi.org/10.1016/j.msec.2019.110570
Kavetskyy T., Stasyuk N., Smutok O., Demkiv O., Kukhazh Y., Hoivanovych N., Boev V., Ilcheva V., Petkova T., Gonchar M. Improvement of amperometric laccase biosensor using enzyme-immobilized gold nanoparticles coupling with ureasil polymer as a host matrix. Gold Bull. 2019. Vol. 52. P. 79–85, https://doi.org/10.1007/s13404-019-00255-z
Salvo-Comino C., González-Gil A., Rodriguez-Valentin J., Garcia-Hernandez C., Martin-Pedrosa F., Garcia-Cabezon C., Rodriguez-Mendez M.L. Biosensors platform based on chitosan/AuNPs/phthalocyanine composite films for the electrochemical detection of catechol. the role of the surface structure. Sensors (Basel). 2020. Vol. 20. P. 2152, https://doi.org/10.3390/s20072152
Almeida I., Henriques F., Carvalho M., Viana A. Carbon disulfide mediated self-assembly of Laccase and iron oxide nanoparticles on gold surfaces for biosensing applications. J. Colloid Interface Sci. 2017. Vol. 485. P. 242–250, https://doi.org/10.1016/j.jcis.2016.09.042
Lekshmi I.C., Rudra I., Pillai R., Sarika C., Shivakumar M.S., Shivakumara C., Konwar S.B., Narasimhamurthy B. Enhanced catechol biosensing on metal oxide nanocrystal sensitized graphite nanoelectrodes through preferential molecular adsorption, Journal of Electroanalytical Chemistry. 2020. Vol. 867. P. 114190, https://doi.org/10.1016/ j.jelechem.2020.114190.
Zhang, Y.; Li, X.; Li, D.; Wei, Q. A laccase based biosensor on AuNPs-MoS2 modified glassy carbon electrode for catechol detection. Colloids Surf. B Biointerfaces. 2020. Vol. 186. P. 110683, https://doi.org/10.1016/j.colsurfb.2019.110683
Pillai R., Preetha S., Narasimhamurthy B., Lekshmi I.C. Biosensing of catechol via amperometry using laccase immobilized nickel oxide/graphite modified screen-printed electrodes. Materials Today: Proceedings. 2022, in press, https://doi.org/10.1016/j.matpr.2022.03.708
Agnihotri A.S., Varghese A., Nidhin M. Transition metal oxides in electrochemical and bio sensing: A state-of-art review. Applied Surface Science Advances. 2021. Vol. 4. P. 100072, https://doi.org/10.1016/j.apsadv.2021.100072
Kavetskyy T., Smutok O., Gonchar M., Demkiv O., Klepach H., Kukhazh Yu., Šauša O., Petkova T., Boev V., Ilcheva V., Petkov P., Stepanov A. Laccase-based functional biosensors with host organic-inorganic ureasil-based polymer matrix. Journal of Applied Polymer Science. 2017. Vol. 134. P. 45278, https://doi.org/10.1002/app.45278
Kavetskyy T., Smutok O., Demkiv O., Kasetaite Si., Ostrauskaite J., Švajdlenkova H., Šauša O., Zubrytska K., Hoivanovych N., Gonchar M. Dependence of operational parameters of laccase-based biosensors on structure of photocross-linked polymers as holding matrixes. European Polymer Journal. 2019. Vol. 115. P. 391–398, https://doi.org/10.1016%2Fj.eurpolymj.2019.03.056
Kadam A.A., Saratale G.D., Ghodake G.S., Saratale R.G., Shahzad A., Magotra V.K., Kumar M., Palem R.R., Sung J.-S. Recent advances in the development of laccase-based biosensors via nano-immobilization techniques. Chemosensors. 2021. Vol. 10. P. 58, https://doi.org/10.3390/chemosensors10020058
Li H., Hu X., Zhu H., Zang Y., Xue H. Amperometric phenol biosensor based on a new immobilization matrix: polypyrrole nanotubes derived from methyl orange as dopant. Int. J. Electrochem. Sci. 2017. Vol. 12. P. 6714–6728, https://doi.org/10.20964/2017.07.80
Cevher Ş.C., Bekmezci S.A., Soylemez S., Udum Y.A., Toppare L., Çırpan A. Indenoquinoxalinone based conjugated polymer substrate for laccase biosensor. Materials Chemistry and Physics. 2021. Vol. 257 P. 123788, https://doi.org/10.1016/ j.matchemphys.2020.123788